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cal forms that can be written for the deprotonated analog 
(1711). 

visible and near-infrared regions make i t  difficult to 
assess the structure of this complex in a definitive man- 
lier. However, a five-coordinate molecule, in which the 
acetate anion is bonding in a bidentate fashion, is a 
possibility. A transformation to an octahedral ar- 
rangement, probably through the coordination of sol- 
vent molecules, is noted when the complex is dissolved 
in dimethylformamide. We are still in the process of 
assessing this structure. 
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More interesting, perhaps, is that deprotonation can 
be brought about by altering the anion associated with 
the transition metal salt. I n  contrast to the perchlorate 
salt which gives rise to the protonated complex (V), 
the transition metal chloride or acetate derivative in 
conjunction with two ligand molecules yields the de- 
protonated species (VI) directly. A possible explana- 
tion for this phenomenon is the extreme acidity of the 
amino proton which requires the presence of the least 
basic anion for its retention. In the case of the copper- 
(11) system, spontaneous deprotonation occurs even 
in the presence of the perchlorate ions. Thus, the 
reaction of copper(I1) perchlorate with 1,3-bis(2- 
pyridy1imino)isoindoline does not result in the pre- 
cipitation of the protonated cationic species as was the 
case with the other metal analogs. Rather, in about 2 
days, a green, crystalline solid forms nhich is the de- 
protonated complex. 

The transformation of the cationic complexes into 
their neutral counterparts is accompanied by altera- 
tions in both chemical and physical properties. Changes 
in color, increased solubility in organic solvents, trans- 
formation to nonconductors, and the disappearance of 
the infrared absorption arising from the Xu'-H stretch 
accompany the formation of the neutral species. In  
contrast is the consistency exhibited by the magnetic 
moments of the divalent iron, cobalt, and nickel com- 
plexes which indicate that the octahedral array is re- 
tained after deprotonation. This is further confirmed by 
spectral studies on the nickel(I1) derivatives in the 
visible and near-infrared regions in which i t  is noted 
that the absorptions remain nearly constant in both 
position and intensity (Table 11). Unfortunately, in 
the spectra obtained from DMF solutions, no d-d 
transitions could be observed below 650 mp owing to 
the onset of strong charge-transfer bands. 

The reaction of nickel acetate with 1,3-bis(2-pyridyl- 
imino)isoindoline in a 1 : l  molar ratio results in the 
separation of a small amount of a complex of the 
general formula M (L-H) ( C2H302). The nonconducting 
nature of this complex indicates that the acetate anion 
is coordinated to the nickel. The magnetic moment 
of 3.01 BM and the positions of absorptions in the 
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By virtue of their structural relationship to therm- 
ally stable trimeric and tetrameric aryloxy substituted 
phosphonitriles1s2 and to polymers obtained by conden- 
sation of cyclic phosphonitrilic chlorides with poly- 
functional aromatic compounds, aminophenoxy- and 
isocyanatophenoxy-substituted cyclic phosphonitriles 
are attractive intermediates for the formation of therm- 
ally stable, fire-resistant fluids and polymers. Since 
reactions of cyclic phosphonitrilic chlorides with bi- 
functional compounds such as p-aminophenol or hydro- 
quinone4 lead inevitably to the formation of highly 
cross-linked polymers, other routes for the preparation 
of polyfunctional aininophenoxy- and isocyanato- 
phenoxyphosphonitriles had to be found. 
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The accessibility of 2,2,4,4,6,6-hexakis (pnitrophenoxy) - 
phosphonitrile (I) in high yield by a recently reported 
procedure5 encouraged us to attempt the synthesis of 
2,2,4,4,6,6-hexakis(p-aminophenoxy)phosphonitrile (11) 
by hydrogenation of I. Although the PN nucleus of 
cyclic phosphonitrilic chloride does not survive hydro- 
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genolysis and is completely cleaved by reducing 
agents,6 one could expect that  complete phenoxy 
substitution would render the P N  ring less vulnerable 
to hydrogenation and thus would permit exclusive 
conversion of the nitro groups to amino groups. We 
found indeed that  catalytic hydrogenation of 2,2,4,4,- 
6,6-hexakis(~-nitrophenoxy)phosphonitrile (I) with 
Raney nickel does not attack the PN nucleus to any 
appreciable extent. 2,2,4,4,6,6-Hexakis(p-aminophe- 
noxy)phosphonitrile (11) was obtained in high yields 
using aniline as solvent. 

Phosgenation of 2,2,4,4,6,6-hexakis@-aminophe- 
noxy)phosphonitrile (11) in refluxing o-dichlorobenzene, 
utilizing a high dilution factor to suppress reaction 
between amino and isocyanato groups, and recrystal- 
lization of the crude reaction product gave pure 2,2,4,- 
4,6,6-hexakis(p-isocyanatophenoxy)phosphonitrile (111) 
in 46y0 yield. Higher polymeric PN compounds of 
the urea type were obtained as by-products, but not 
further identified. All six isocyanato groups of com- 
pound I11 reacted readily with methanol and 1-butanol 
to give the expected hexamethyl- and hexabutyl- 
carbamates (IV, V) in quantitative yields. With 
glycols such as diethylene glycol, high polymeric ure- 
thanes were obtained. 

Experimental Section 
2,2,4,4,6,6-Hexakis(~-aminophenoxy)phosphonitrile (II).-A 

1000-ml stirring autoclave was charged with 77.0 g of 2,2,4,4,6,6- 
hexakis(p-nitrophenoxy)phosphonitrile,5 550 g of aniline, and 10 
g of Raney nickel catalyst. The vigorously agitated mixture was 
hydrogenated under 1000-psig hydrogen pressure a t  80-90' until 
no further pressure drop was recorded (-3-4 hr). The reaction 
mixture was filtered, and most of the aniline solvent was removed 
by distillation in zlucuo. The residue was diluted with ether to 
yield a gummy precipitate from which the liquid layer was 
decanted. The gum was treated with 250 ml of 2 N sulfuric acid 
and filtered. The solid filter cake was then added to 500 ml of 
2 N sodium hydroxide and, with stirring, heated to 80-100' for 
15 min. After filtration, the crude compound I1 was washed 
with water to neutrality, dried in vucuo over P205, and finally 
recrystallized from o-dichlorobenzene; yield 37.0 g (60%) of 
pure 11, mp 189-190". Additional amounts of 11 were obtained 
by working up the mother liquors. Anal. Calcd for CS&&~- 
06P3: C, 55.17; H, 4.63; N, 16.11; P, 11.80. Found: C, 
55.17; H, 4.91; N, 16.11; P, 11.61. 
2,2,4,4,6,6-Hexakis(p-isocyanatophenoxy)phosponitrile (111). 

-Phosgene was passed into 250 ml of boiling o-dichlorobenzene a t  
a rate of approximately 10 g/hr. To this mixture was slowly 
added a hot solution of 20 g of 2,2,4,4,6,6-hexakis(p-amino- 
phenoxy)phosphonitrile (11) in 1500 ml of o-dichlorobenzene 
over a period of 4.5 hr. After complete addition, heating and 
slow passage of COClz was continued overnight. The solution 
was then filtered from 6.5 g of insoluble material. The solvent 
was distilled in vacuo to render 17 g of a brown solid which was 
recrystallized, first from toluene and then from acetonitrile, to 
yield 11 g (46%) of pure 111, mp 149-150'. Calcd for 
C ~ Z H Z ~ N S O ~ ~ P ~ :  C, 53.68; H, 2.57; h', 13.42; P, 9.90. Found: 
C, 53.85; H, 2.60; N, 13.16; P, 9.24. 

The hexamethylcarbamate (IV), mp 148O, was prepared from 
I11 and boiling methanol in 98Yi yield. Anal. Calcd for C48H48- 
N9O18P3: C, 50.93; H, 4.27; N, 11.13; P, 8.22. Found: C, 
50.73; H, 4.25; N, 11.02; P, 8.22. 

The hexa-n-butylcarbamate (V),  mp 163.5-164', was prepared 
from I11 and n-butyl alcohol in quantitative yield. Anal. 

Anal. 
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Calcd for CB&~N&P~: c ,  57.26; H, 6.12; N, 9.11; P, 6.72. 
Found: C, 57.24; H, 6.12; N, 9.15; P, 6.67. 
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Hydrogen tautomerism in boron hydride like com- 
pounds was first deduced from the nmr spectrum of 
aluminum borohydride. Discovery of hydrogen tau- 
tomerism in many other boron hydrides and derivatives 
f o l l o ~ e d . ~ ? ~  The Bl' nmr spectrum of B3H7.0(C2H& 
indicated that  all borons were identical (single chemical 
shift value) and that  hydrogen tautomerism was taking 
place (all borons were equally spin-spin coupled to all 
seven protons).2 In  order to account for the single 
chemical shift value i t  is necessary to assume that  
rapid Lewis base exchange is taking place (possibly 
synchronized with the hydrogen tautomerism). 

Lewis base exchange would not be expected when the 
ligand is a much stronger Lewis base than the solvent. 
In  this case, the Bll nmr spectrum of a B3H7.LB 
(LB = Lewis base) should show a t  least one non- 
equivalent boron. In order to check this, we obtained 
the B" nmr spectra of B3H?.N(CH3)3 in benzene and 
in ether and the spectra of BsH7.THF (tetrahydro- 
furan) in benzene and in THF.  

Trimethylamine triborane (B3H7  CHI)^) was pre- 
pared according to the method of Graybill, Ruff, and 
H a ~ t h o r n e . ~  The T H F  adduct was synthesized by a 
slight modification of the method of Kodama.6 B1l 
nmr spectra were obtained with Varian nmr spectrom- 
eters, Models V-4300 (12.83 Mc) and DP-60 (19.3 Mc). 
Chemical shifts and coupling constants were determined 
using boron trichloride, boron triethyl, and aqueous 
sodium borohydride as external standards. The spec- 
trum of trimethylamine triborane in benzene is com- 
patible with the superposition of two octets, both with 
J values of about 35 cps. One octet appears to be 
centered about 35 cps upfield and is half the intensity 
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